Схема драйвера для светодиодов в люстре
Схема очень простая, может, кому-то пригодится в ремонте:
Драйвер питания последовательных светодиодов люстры. Схема электрическая
Коротко устройство. Балластная ограничительная цепочка – С1, С2, R1. На этой цепи падает бОльшая часть напряжения. Далее переменное напряжение поступает на диодный мост, и потом – на фильтр R3, C3, R2.
Если нужно немного поднять напряжение на выходе драйвера под нагрузкой (т.е. уменьшить его выходное сопротивление, см. часть статьи с расчётами), то можно поднять ёмкость конденсатора фильтра до 10…20 мкФ. Тогда количество светодиодов можно будет немного увеличить.
А если нужно уменьшить количество светодиодов в люстре (например, часть перегорела), то можно уменьшить емкость балласта, убрав один из конденсаторов С1, С2. Это экспериментально.
Как отключить подсветку на выключателе: светодиодную или неоновую
Выключатель со светодиодной или неоновой подсветкой уже далеко не редкость в домах. Использование таких выключателей — достаточно практично. В темное время суток Вам не придется искать по стене рукой, чтобы нащупать выключатель. С появление светодиодных и КЛЛ ламп стали возникать большие проблемы. В частности, большинство современных LED ламп при выключенном выключателе мигают. Сегодня разберемся, как отключить подсветку на выключателе.
Данный эффект возникает вследствие замкнутой электрической цепи, образованной резистором со светодиодом ( или неоновой лампой) и схемой преобразователя питания LED и КЛЛ лампы. В настоящей статье мы рассмотрим наиболее простой метод по вопросу: как отключить подсветку в выключателе.
Как отключить подсветку на выключателе
Первоначально нам необходимо демонтировать выключатель. Производите отключение от проводников, предварительно отключив выключатель от электроэнергии. Для тех, кто не раз уже это делал — занятие «плевое».
После того, как выключатель демонтирован, необходимо снять кожух, где расположен сам светодиод (или неон).
В нашем случае подсветка состоит из неоновой лампы и резистора 150кОм. Со светодиодом ничего кардинально не меняется, поэтому принцип: как отключить подсветку в выключателе со светодиодом остается аналогичным. Неоновая лампа подключена через резистор к клеммам выключателя.
Как отключить подсветку в выключателе
Если быстро накидать схему подключения подсветки в выключателе? то она будет выглядеть следующим образом:
Как отключить подсветку на выключателе: этап 2
Для исправления ситуации с миганием диодной лампы нам необходимо заменить резистор. В нашем случае берем резистор на 220 кОм и диод 1 N 4007. Диод можно снять с энергосберегающей лампы, где он используется в качестве диодного моста. Схема переделанного выключателя будет выглядеть следующим образом:
Если мы оставляем неоновую лампу, то достаточно будет резистора на 220 кОм. Если захотим поменять индикатор на диод 3 мм, то подберите резистор на 680 кОм. Это гарантированно избавит Вас от мигания диодной лампы в люстре.
Как отключить подсветку выключателя видео
Ну и на последок снова посмотрите видео, как отключить подсветку светодиодную или неоновую от выключателя, чтобы лампы не мигали. Это кардинальное решение проблемы.
Мы просто выкусываем все радиодетали и больше «не паримся». Однако, такой способ борьбы с миганием меня не удовлетворяет, поэтому лучше все-таки пользоваться вышеприведенным примером.
И выключатель не надо превращать в простую клавишу и функции остаются.
Выключатели электроприборов с подсветкой
В выключателях на переносках и удлинителях, тепло обогревателях и других электроприборах часто устанавливают выключатели с подсветкой. В них обычно вмонтирована неоновая лампочка с резисторами. Пришлось однажды ремонтировать удлинитель типа Пилот, в котором выпала и треснула клавиша управления выключателем.
Когда разобрал выключатель, то не обнаружил токоограничивающего резистора, чем был очень удивлен. Неоновые лампочки недопустимо подключать в электрическую сеть 220 В без ограничения тока. Сразу же выйдет из строя. На левой фотографии вид клавиши со стороны установки неоновой лампочки, а справа, обратная сторона этой же клавиши выключателя.
Измерял сопротивление между пружиной и выводом неоновой лампочки, оно составило 150 кОм. В этом выключателе применили интересное конструктивное решение, два резистора номиналом по 150 кОм установили в отверстия клавиш и пружиной прижали их к выводам неоновой лампочки, обеспечив надежный контакт. Сами пружины осуществляют прижим подвижных контактов в выключателе, с которых, когда выключатель находится в положении Включено, и подается питающее напряжение на неоновую лампочку.
Схема подсветки выключателя на светодиоде и конденсаторе
Для повышения КПД подсветки в выключателе можно в электрическую схему установить дополнительный конденсатор, уменьшив при этом номинал резистора R1 до 100 Ом.
Эта схема отличается от вышеприведенной применением в качестве токоограничивающего элемента вместо резистора, конденсатора С1. R1 тут выполняет функцию ограничения тока заряда конденсатора. Сопротивление R1 можно применять от 100 до 500 Ом мощностью от 0,25 Вт. Вместо простого диода VD1 можно установить светодиод, такой же, как и VD2. КПД схемы не изменится, а светить будут сразу оба светодиода с одинаковой яркостью.
Достоинством схемы с конденсатором – малое энергопотребление, около 0,05 кВт×часа в месяц. Недостатки схемы такие же, как у выше представленной и в дополнение большие габаритные размеры.
Как устроен выключатель
Выключатель с подсветкой устроен достаточно просто: помимо главного элемента – клавиши, чтобы можно было включить или отключить питание светильника, в его состав входят светодиод или неон с резистором. Последний соединяется с клеммами устройства в обход разъединительной кнопки. Благодаря такой схеме вся электроцепь находится в замкнутом состоянии.
Однако сопротивление дополнительного
освещения существенно ниже основного источника, поэтому в идеале последний не
работает в выключенном состоянии, а работает только светодиод. Когда
выключатель замыкает основную ветку (на люстру) ток переходит на основное
сопротивление (лампочку) и лэд-элемент отключается.
Причины мигания при выключенном свете
Нередко происходит, что после отключения света мерцание лампы продолжается. Днем этого не видно, но в темное время суток слабые мерцающие вспышки становятся хорошо различимы. Почему мигает энергосберегающая лампа при выключенном свете? Такое поведение прибора может происходить по 3 причинам: низкокачественное изделие, плохой неоновый выключатель с подсветкой или неправильная его установка.
Неисправность и проблемы проводки
Если светодиодная лампа после выключения мерцает, проблема может быть связана с проводкой. Необходимо проверить, как подключен кабель с фазой. Правильным подключение считается тогда, когда фаза проходит через выключатель, а не соединена напрямую к светильнику. Распознать фазовый провод поможет отвертка-индикатор диодов. Распределив правильно провода, лампочку еще раз проверяют на работоспособность. Часто случается моргание из-за наведенного напряжения. Это когда силовой провод расположен слишком близко к отключенному кабелю.
Работая с проводкой, нужно:
- учитывать ее состояние;
- соблюдать технику безопасности.
Если используемый выключатель не имеет ночной подсветки, а мерцание продолжается, то лучше электропроводку полностью заменить новой.
Watch this video on YouTube
Наличие выключателя с подсветкой
Выключатели с подсветкой пользуются наибольшей популярностью среди потребителей. Конструкцию оборудуют неоновой лампой или простым светодиодом, что позволяет ночью легко находить выключатель. Но с добавлением новой детали светодиодная лампочка начала мигать. Это происходит из-за небольшого заряда, который скапливается на конденсаторе фильтра:
- при включении выключателя электричество поступает прямо к лампе, а при выключении — на светодиод;
- из-за поступления тока фильтр начинает постоянно заряжаться, и лампа мерцает.
Так как убрать мигание светодиодной лампы можно 2 способами, то выбирают один из них. Вместо энергосберегающей модели ставят лампу накаливания или разъединяют цепь питания, отключив подсветку. Если светильник имеет 2 лампочки, то, заменив одну из них на лампу накаливания, можно избавиться от мерцания. Самый быстрый и простой способ — это установить простые выключатели без подсветки.
Некачественные лампы
Лампочка в выключенном состоянии может мигать тогда, когда она неисправна. На рынке есть множество продукции, которая не отвечает требованиям стандарта, и пытаясь сэкономить, многие люди покупают приборы у неизвестных производителей. Если товар был куплен некачественный, то достаточно приобрести новую лампу. Что нужно учитывать при покупке:
- изготовителя;
- качественные лампы продают в цельных упаковках;
- изделие проверяют на работоспособность.
Большой популярностью пользуются компактные модели. В подсобных помещениях и коридорах принято устанавливать светодиодные лампы с холодным температурным режимом, в детских комнатах, гостиных и других жилых помещениях — с теплым оттенком.
Отключение подсветки в выключателе
Чтобы избавиться от миганий в лампе на 220 В, нужно из выключателя удалить светодиодную или неоновую подсветку. Для этого подготавливают все необходимые инструменты:
- отвертку с плоским шлицем;
- индикаторную отвертку;
- кусачки;
- нож.
Прежде чем приступить к работе, отключают электричество. Если в доме установлены предохранители, то их выкручивают. Если на панели расположена ручка автоматического отключения, то ее ставят в положение «отключено». Работа по разборке подсветки идентична замене простого выключателя:
- Декоративные клавиши «включения-выключения», расположенные на корпусе, имеют защелки. Их поддевают с двух сторон и аккуратно снимают.
- Чтобы извлечь из коробки устройство, откручивают монтажные болты.
- Контактные провода должны быть обесточены. Их проверяют индикаторной отверткой.
- Прежде чем отсоединить провода, внимательно запоминают их расположение.
- Корпус конструкции состоит из 2 деталей, которые скреплены защелками. Поэтому его осматривают на их наличие.
- Обнаружив защелки, их раздвигают. При этом выключатель разделится на 2 части.
- Резистор с лампочкой припаян к одной из частей. Светодиод или неоновую лампочку отсоединяют и удаляют.
Выключатель без подсветки собирают в обратном порядке. На всю работу понадобится не более 30 минут.
Почему могут мерцать светодиодные лампы в выключенном состоянии
Вначале скажем пару слов о конструкции светодиодной лампы. Хоть она и подключается к источнику переменного тока, работает она на постоянном. Напряжении в сети 220 В, а для работы светодиодов необходимо меньшее напряжение. Для того, чтобы превратить переменное напряжение в постоянное и снизить его величину в состав светодиодной лампы входит специальное устройство, называемое драйвером. На входе драйвера установлен выпрямитель из четырех диодов. Для сглаживания пульсаций выпрямленного тока в нем, как и в выпрямителе, используются электролитические конденсаторы. После емкостного фильтра напряжение подается на электронную схему, преобразующую и стабилизирующую выходное напряжение. Теперь, зная конструкцию драйвера, можно объяснить, почему светодиодная лампа мерцает после выключения.
Одной из причин мерцания или периодического вспыхивания светодиодной лампы после выключения являются выключатели с подсветкой. При включенном выключателе ток идет к лампе напрямую через его контактную систему, а при выключенном – через маломощную неоновую лампочку. Работая после отключения последовательно с нагрузкой, она потребляет небольшой ток. Ток протекает не только через лампочку подсветки, но и через нагрузку.
Ток питающий подсветку выключателя проходит через нагрузку
Проходя через выпрямительные диоды драйвера, он заряжает электролитический конденсатор фильтра. Напряжение на нем возрастает и при достижении величины, достаточной для срабатывания схемы стабилизации, поступает на светодиоды. Они вспыхивают и разряжают конденсатор. Далее процесс повторяется с частотой, зависящей от параметров драйвера: емкости конденсатора, способа стабилизации, мощности светодиодов.
Выключатель с подсветкой может быть одной из причин мерцания светодиодной лампы в выключенном состоянии
Точно по той же причине мигают в выключенном состоянии энергосберегающие лампы. В них также установлена схема, включающая в себя выпрямитель, фильтр и схему запуска и поддержания работы лампы. Люминесцентные лампы, имеющие полупроводниковую пускорегулирующую аппаратуру, тоже не терпят выключателей с подсветкой и периодически вспыхивают после отключения. Очевиден и ответ на вопрос, как убрать мерцание светодиодных и других ламп в этом случае. Нужно поменять выключатель на обычный, без подсветки. Либо удалить из него неоновую лампочку. Сделать это несложно, так как лампочка подключается при помощи разъемного винтового соединения и ее отсутствие не повлияет на работоспособность устройства.
Но иногда подсветка бывает нужной, а на некоторых моделях она устроена сложнее, и от нее так просто не избавиться. А замена выключателя не желательна, так как нарушается дизайн помещения. Как в этом случае избавляться от мерцания светодиодных ламп? Нужно исключить прохождение тока через схему лампы, направить его по другому пути. Самый простой выход из положения работает при размещении ламп в люстре или включении группы ламп одним выключателем. Одну из них нужно заменить на небольшой мощности галогеновую или накаливания. Сопротивление их намного меньше, чем всех подключенных к выключателю осветительных приборов, поэтому ток через нее в выключенном положении пойдет больший. Оставшегося миниатюрного тока гарантированно не хватит для зарядки конденсаторов. Если лампа подключена в единственном экземпляре или применение другого типа осветительных приборов нежелательно или невозможно, для шунтирования можно использовать постоянный резистор. Подойдет резистор с сопротивлением около 51 кОм и мощностью не менее 2 Вт. Его нужно подключить к параллельно любой из ламп, объединенных в группу.
Резистор подключенный параллельно шунтирует ток проходящий через нагрузку
Удобно сделать это в соединительной коробке или непосредственно на патроне лампы (если лампа одна в группе).
Выводы резистора нужно изолировать, да и на него самого неплохо надеть термоусаживаемую или изоляционную трубку. Если длины его выводов недостаточно, их можно нарастить, припаяв гибкие провода сечением 1,5 мм 2 . Но почему лампы после отключения все равно мерцают, если в выключателе нет подсветки. Это происходит, если рядом с осветительной электропроводкой идут кабели другого назначения, например, розеточной сети. После отключения выключателя провод, идущий от него к светильнику, оказывается под влиянием этих кабелей и они наводят в нем напряжение, достаточное для мерцания светодиодных ламп. Тем более, что ноль на них приходит всегда. Бороться с наводками можно теми же способами: установкой лампы накаливания или резисторов.
Расчеты сопротивления источника и светодиодов
Теперь для интереса посчитаем выходное сопротивление источника питания и сопротивления светодиодов. В расчетах участвуют – старый добрый Ом со своим знаменитым законом и формула делителя напряжения.
Итак, для случая на 30 светодиодов имеем:
- Напряжение холостого хода источника тока – 305 В,
- Напряжение источника тока под нагрузкой – 107 В,
- Ток в цепи (да, ещё старина Кирхгоф со своим 1-м законом!) – 0,02 А.
Чтобы расчеты были понятнее, прилагаю схему:
Схема для измерения сопротивлений
Предполагаем, что на вход схемы подается напряжение от идеального источника ЭДС с нулевым внутренним сопротивлением. Реальный источник электричества имеет внутреннее сопротивление Ri, которое мы сейчас посчитаем.
При измерении напряжения холостого хода Uн = Uхх = 305 В, поскольку входное сопротивление вольтметра гораздо больше внутреннего сопротивления источника Ri.
При подключении нагрузки Uн = 107 В, значит, напряжение, падающее на внутреннем сопротивлении источника Ri, равно 305 – 107 = 198 В.
Зная ток, посчитаем внутреннее сопротивление:
Ri = 198 В / 0,02 А = 9900 Ом.
Много это или мало? Всё познается в сравнении. В данном случае – в сравнении с сопротивлением нагрузки:
Rн = 107 В / 0,02 А = 5350 Ом.
Это – сопротивление последовательно соединенных светодиодов, когда через них протекает ток 0,02 А. Значит, сопротивление одного светодиода равно 5350 Ом / 30 = 178 Ом.
Мы видим, что сопротивление источника электропитания больше сопротивления нагрузки. Значит – перед нами – источник тока. То есть, при изменении сопротивления нагрузки (количества светодиодов) в некоторых пределах ток почти не меняется.
Можно посчитать сопротивление диодов, когда их 22 штуки, оно будет меньше из-за того, что ток будет больше, а вольт-амперная характеристика диода нелинейна.
Ладно, что-то мы отклонились от темы.
Теперь – обещанный десерт.
Калькулятор для расчета параметров токоограничивающего резистора
При самостоятельной установке в выключатель подсветки на светодиоде или на неоновой лампочке необходимо определить величину и мощность токоограничивающего сопротивления. Расчет можно выполнить по формулам, но гораздо удобнее рассчитать параметры резистора по специальному калькулятору. Достаточно ввести параметры и получить готовый результат. Калькулятор может быть полезен и для выбора резистора в выключателе с подсветкой заводского изготовления, в случае выхода резистора из строя.
Онлайн калькулятор для расчета номинала и мощности токоограничивающего резистора | |
---|---|
Напряжение источника питания U, В: | |
Напряжение падения на одном светодиоде или неоновой лампочке, В: | |
Кол-во последовательно включенных LED или неоновых лампочек, шт: | |
Максимально допустимый ток через LED или неоновую лампочку, мА: | |
Справка. На светодиоде падение напряжения лежит в пределах 1,5-2 В, на неоновой лампочке падает 40-80 В. Необходимый минимальный ток, при котором гарантируется свечение светодиода, составляет 2 мА, неоновой лампочки – 0,1 мА. Эти данные можно использовать при расчетах на калькуляторе, если неизвестны параметры светодиода или неоновой лампочки.
При выборе сопротивления возникает необходимость в определении его номинала по цветовой маркировке. поможет решить этот вопрос.
Схема подсветки выключателя на светодиоде и сопротивлении
В настоящее время в выключатели для подсветки устанавливаются, как правило, светодиоды, включенные в выключателе по нижеприведенной электрической схеме.
Когда выключатель находится в положении «Выключено» ток проходит через сопротивление R1, далее через светодиод VD2, который светится. Диод VD1 защищает VD2 от пробоя обратным напряжением. R1 любого типа мощностью более 1 Вт, номиналом от 100 до 150 кОм. При указанном на схеме номинале R1, ток протекает около 3 мА, что вполне достаточно для хорошо заметного свечения в темноте. Если же свечение светодиода будет недостаточным, то величину сопротивления нужно уменьшить. VD1 любого типа, VD2 любого типа и цвета свечения. Для того, чтобы разобраться в теории и самостоятельно рассчитать величину и мощность резистора то нужно ознакомившись со статьей «Закон силы тока».
Схему подсветки выключателя на светодиоде можно устанавливать, если в светильнике используется лампочки накаливания. Если стоят компактные люминесцентные (энергосберегающие), то не исключено, что в темноте Вы можете заметить их слабое свечение или мигание. Если в светильнике установлены светодиодные лампочки, то подсветка, сделанная по этой схеме может даже не работать, так как сопротивление светодиодной лампочки очень большее и ток достаточной силы для свечения светодиода может не создаться. В темноте возможно слабое свечение светодиодной лампочки. Схема очень простая, но имеет большой недостаток, потребляет много электроэнергии, около 1 кВт×часа в месяц. Вот так выглядит смонтированная схема.
Осталось только подсоединить к клеммам выключателя концы, которые смотрят вниз. Если Вы не допустили ошибки при монтаже, то схема сразу заработает. Я специально выложил фото на скрутках для тех, у кого нет возможности пропаять соединения паяльником. Для надежности и безопасности нужно все же пропаять скрутки и покрыть изолентой голые провода и резистор.
Схема подсветки выключателя на неоновой лампочке (неонке)
Схема подсветки выключателя на неоновой лампочке (неонке) лишена недостатков, присущих выше представленных схемам подсветки на светодиодах. Такая схема подсветки выключателя подходит для выключателей люстры и любых других видов светильников, с установленными в них как лампочками накаливания, так и энергосберегающих люминесцентных и светодиодных ламп.
Когда выключатель разомкнут ток течет через сопротивление R1, газоразрядную лампочку HG1 и она светится. R1 любого типа мощностью более 0,25 Вт, номиналом от 0,5 до 1,0 МОм.
На фотографии Вы видите собранную схему подсветки выключателя, проще которой не бывает. Достаточно последовательно с неоновой лампочкой любого типа включить резистор и схема готова.
Светодиоды или светодиодные лампочки?
Давайте, прежде чем переходить к практическим вопросам ремонта, для начала выясним, какие светодиодные лампочки и светодиоды применяются в люстрах, и как они подключаются.
Светодиодная лампа и светодиод – есть разница?
Разница принципиальная. Давайте разберёмся.
Какие светодиоды используются в люстрах
Светодиоды бывают одноцветные (в люстрах, как правило, используются синие или белые), двухцветные (красно-синие), и многоцветные (например, красный-синий-зеленый). В конце статьи дам ссылки, можно будет посмотреть, что сейчас есть в продаже. Там же – много справочной информации.
Напряжение питания одноцветных светодиодов – 2..2,4 В (красный, желтый, желто-зеленый, оранжевый) или 3,0…3,6 В (белый, голубой, зеленый, пурпурный, розовый). Эти два диапазона – для светодиодов разных цветов, у них немного разные физические принципы работы. Соответственно, и яркость свечения сильно отличается.
Вот Справочная таблица по напряжениям и другим параметрам светодиодов, взята с сайта продавца:
Таблица параметров светодиодов для люстр (и не только!) разных цветов.
Прямой ток (If) всех моделей равен 20 мА. Этот ток является оптимальным, с точки зрения соотношения яркость/долговечность. То есть, чем меньше ток, тем дольше светодиод будет работать. И чем больше ток, тем ярче.
Многоцветные (multi-color) можно разделить на два вида, по способу переключения цветов:
- Светодиоды без управления, с автоматическим переключением цветов. Переключение бывает быстрое и медленное, цветов два или три.
- Светодиоды с управлением, когда для включения того или иного цвета (2 или 3) нужно подать напряжение на нужный вывод светодиода. Напряжения, в зависимости от цвета могут быть разные – 2 или 3 Вольта.
Бывают светодиоды на напряжение 5В. В основном, это относится к двухцветным моделям. Тогда, применяется вот такой драйвер:
RB Synchronous double controller – драйвер на последовательные светодиоды 5 В
На этом драйвере написано “RB Synchronous double controller”. Количество светодиодов – 31-40 шт, напряжение на каждом – 5 В. Более подробно надписи и параметры подобных драйверов будут рассмотрены ниже.
Конкретной информации по по типам светодиодам в интернете мало, и использовать её трудно – ведь светодиоды прозрачные, и не имеют надписей. Остается только ориентироваться на описания у продавцов (ссылки будут в конце статьи). Либо выяснять опытным путем. Ниже, в части про ремонт, будет рассказано как.
В люстрах используются светодиоды с прозрачным круглым корпусом, диаметр – 5 (4,8) мм. Ещё особенность – светодиоды в люстрах без линзы, с укороченным корпусом, типа “соломенная шляпа”. У них широкая диаграмма направленности.
Светодиоды имеют проволочные выводы под пайку. Хотя, в люстрах их никогда не паяют, а вставляют прямо в разъем “мама”. Главное – соблюдать полярность.
Светодиодные лампочки в люстрах
Светодиодные лампочки в 99% – на напряжение 12 В переменного или постоянного тока. Чаще всего сейчас попадаются лампочки с универсальным питанием, на 12 VDC/VAC, которые питаются от электронного трансформатора на 12 В переменного тока. Такие трансформаторы (точнее, источники напряжения, или драйверы) гораздо дешевле, чем на постоянный ток.
В связи с этим, можно вообще без переделки поменять галогенные лампочки на светодиодные. В случае, если в люстре применяется трансформатор с выходным напряжением 12 VAC.
Светодиодные лампочки, как правило, имеют разъем (точнее, цоколь) G4, который применялся в галогеновых лампах.
Такая лампочка показана на фото выше. Если кто не понял – прозрачный пузатик слева)
Параллельное или последовательное включение?
Можно уверенно сказать, что светодиодные лампочки включаются параллельно, и питаются от драйвера (источника напряжения) стабильного напряжения 12В. Так же и галогеновые и любые лампы. Не только в люстрах, но и всегда и везде.
Другая вещь – светодиодные матрицы, которые в люстрах не используются, а применяются в основном в прожекторах. Там для питания главное – стабильный ток.
И нечто среднее – драйвер, который делает из переменного напряжения постоянное, без всякой стабилизации напряжения и тока
Светодиоды к выходу такого драйвера подключаются последовательно, важно только, чтобы количество светодиодов было в определенных пределах. Именно такие и применяются в люстрах, для последовательного включения
Ладно, хватит теории, теперь самое интересное –
Применение схемы подсветки для индикации
Подсветка выключателя выполняет еще одну дополнительную полезную функцию – индицирует о работоспособности выключателя и исправности лампочки. Если подсветка работает, а свет не включается, значит, неисправен выключатель. Если подсветка не работает, следовательно, перегорела лампочка.
Любой из выше представленных вариантов схем можно применять для индикации исправности приборов или электрических цепей. Например, если подключить параллельно предохранителю, то в случае его перегорании индикатор засветится. Если в электроприборе нет штатного индикатора включенного состояния, то подключив индикатор сразу после выключателя, вы сможете всегда видеть, включен ли прибор. При монтаже в розетке (подключается параллельно токоподводящим проводам) Вы будете знать, находится розетка под напряжением, или нет.
Пошаговая инструкция по установке в выключатель подсветки
При выполнении работ с выключателем необходимо отключить подачу электроэнергии!
Неоновые лампочки бывают с цоколем и без цоколя, у которых выводы выходят прямо из стеклянной колбы. Поэтому и способ их монтажа несколько отличается.
Установка в выключатель неоновой лампочки с гибкими выводами
Как правило, длины выводов у неоновой лампочки (неонки) или светодиода недостаточно для непосредственного подключения к клеммам выключателя и поэтому их надо удлинить отрезком медного провода. Эля этих целей подойдет как одножильный, так и многожильный провод любого сечения. Соединение провода с выводом лучше всего выполнить пайкой.
Перед пайкой выводы неоновой лампочки и концы проводника необходимо зачистить от окислов и залудить с помощью паяльника припоем. Затем примкнуть на длину не менее 5 мм и пропаять припоем.
Затем место пайки и вывод неоновой лампочки нужно заизолировать, надев на них изоляционную трубку. Можно просто навить пару витков изоляционной ленты.
Для удобства пайки конец припаянного проводника формируется с помощью круглогубцев и закрепляется на вывод выключателя.
Клавиши или крышки настенных выключателей обычно делают из белой пластмассы и свет от неоновой лампочки (неонки) или светодиода хорошо через них проходит. Его достаточно для видимости клавиши выключателя в темноте. Поэтому сверлить отверстие в выключателе против места установки подсветки не нужно.
Далее ко второму выводу неоновой лампочки припаивается резистор, а к резистору еще один отрезок провода необходимой длины для подключения ко второму выводу выключателя.
На припаянный резистор тоже надевается изоляционная трубка или его изолируют изоляционной лентой. Конец вывода формируется в колечко и закрепляется на втором выводе выключателя.
Схема подсветки выключателя смонтирована, выключатель подключен к электропроводке, осталось только установить клавишу и работу можно считать законченной.
Установка в выключатель неоновой лампочки с цоколем
Использовать патрон для подсветки нецелесообразно, так как срок службы неоновой лампочки (неонки) больше срока службы выключателя, да и места в коробке мало. Поэтому целесообразнее присоединить цоколь к схеме с помощью пайки.
Для этого нужно снять с проводов изоляцию, залудить оголенные концы и сделать небольшие петельки. Затем припаять к местам пайки выводов лампочки на цоколе.
К проводу, отходящему от центрального контакта цоколя, на расстоянии 2-3 см припаивается резистор. Выводы резистора нужно укоротить и сделать на концах петельки для провода. Ко второму выводу резистора тоже припаивается провод.
Резьбовую часть цоколя и резистор необходимо заизолировать. Это можно сделать с помощью термоусаживающейся трубки, изолирующей ленты или предлагаемым мною способом.
Многие хорошо поливинилхлоридную (ПВХ) трубку, которую часто применяют для изоляции проводов. Чтобы отрезок трубки (кембрик) не сползал, внутренний диаметры должен быть чуть меньше, чем изолируемая пайка. Всегда возникают сложности с поиском кембрика подходящего диаметра.
Но если кембрик подержать минут 15 в ацетоне, то он делается эластичным и легко надевается на деталь, превышающую его внутренний диаметр в полтора раза. Так я изолировал в далеком прошлом лампочки в самодельной новогодней гирлянде.
После испарения ацетона, кембрик опять возвращает свой исходный размер и плотно обтягивает цоколь лампы. Снять кембрик уже невозможно, разве если повторно размочить ацетоном. Такой способ изоляции является аналогом термоусаживающейся трубки, только не требуется нагрева.
После проведения подготовительных работ подсветка размещается в коробке выключателя и подключается к его контактам.